by Candace Martinez, Leandro M. Ledesma, Lisa K. Chinn, & Elena L. Grigorenko
Introduction
This study investigated the influence of stimulus color wavelength on cognitive performance in a virtual reality (VR) Go/No-Go task by assessing participant’s reaction time and accuracy. Previous research has indicated that color has a variety of cognitive, physiological, and behavioral effects on individuals, differentiating their performance. However, there is a gap in understanding the influence of color on performance on VR cognitive tasks. An understanding of how stimulus color wavelength influences human performance could enhance the control over the design and interpretation of assessment and training outcomes in VR.
Materials and Methods
Participants (n = 99, 57 males, aged 18 to 33 years) were recruited from the University of Houston and surrounding areas. Participants completed a VR-based Go/No-Go task. In this task, participants were instructed to strike 3D shape stimuli only if they matched the color of one of 2 virtual sabers that participants hand in their hands in VR (“Go” trials). If neither virtual saber matched the presented shape color (“No-Go” trials), participants were instructed not to respond. Stimulus colors could be violet (407 nm), blue (478 nm), green (507 nm), yellow (612 nm), and red (679 nm). Participants’ reaction times and accuracy were recorded. The study design and procedures were approved by the University of Houston’s Institutional Review Board.
Results
Stimulus color wavelength had a significant influence on accuracy during the Go/No-Go saber color match condition task. In both Go and No-Go trials, longer wavelengths were associated with reduced accuracy. However, no significant findings on wavelength and reaction time were present. These findings emphasize the impact of stimulus color on task performance.
Conclusions
Shorter color wavelengths were associated with higher accuracy in a VR Go/No-Go task. These findings support the importance of color selection in VR tasks and trainings, especially in scenarios that include decision-making and require accuracy. Realistic colors encountered in real-life military operations into VR training environments may better prepare individuals for real-world challenges. Future research in this area could explore color effects in additional tasks and incorporate realistic color-based cues in VR training scenarios.
Key Takeaways:
- Color may influence cognitive performance in virtual reality (VR)
- VR developers should consider color when developing games, simulations, and trainings